RCNet
{Reverse Feature Pyramid (RevFP); Cross-scale Shift Network (CSN)}
Paper: https://arxiv.org/pdf/2110.12130.pdf
Code:
{Reverse Feature Pyramid (RevFP); Cross-scale Shift Network (CSN)}
Paper: https://arxiv.org/pdf/2110.12130.pdf
Code:
1) Motivation, Objectives and Related Works:
Motivation:
Objectives:
Related Works:
Contribution:
2) Methodology:
Reverse Feature Pyramid (RevFP), and RCNet Framework
Reverse Feature Pyramid:
Pyramid Pathway
Traditional FPN:
Top-Down pathway.
Pi = fi(Ci, Pi+1)
RevFP:
Bottom-Up pathway + Local Top-Down pathway.
Adding a local top-down pathway between the 2 nearest feature maps.
Pi = fi(Ci, Ci+1, Pi-1)
Feature-guided Upsampling
Using spatial information from low-level feature maps and semantic information from high-level feature maps.
Weight Attention:
Wi = Softmax(Conv3x3(Concat(Ci,Upsample(Ci+1))))
W'i = Wi * T/sqrt(di), where: di = N.o channels, T = constant.
C'i+1 = Upsample(Ci+1) * W'i
Dynamic Weighted Fusion
Weighted pre-fusion:
W'i = Sigmoid(Con1x1(Concat(Gap(Ci), Gap(C'i+1))))
W'i ∈ R1x1x1
P'i = Conv3x3(W'i * Ci + (1 - W'i) * C'i+1)
Weighted post-fusion
Pi = Conv3x3(W'i * P'i + (1 - W'i) * Pi-1)
Cross-Scale Shift Network:
2 feature maps at 2 close stages have a similar representative.
Cross-scale Shift Network (CSN), have 2 modules:
Multi-scale shift.
Dual global context.
Cross-scale Shift Network
Multi-scale Shift Module
Dual Global Context
Dual Global Context
Scale context branch:
spatial pooling
channel context fusion
scale pooling
Spatial context branch:
scale pooling
channel context fusion
spatial pooling
3) Experimental Results:
Experimental Results:
Ablations:
n2 n0
θ