1) Question:
5.1 Constitutive layers of convolutional neural networks 170
5.2 How does convolution detect edge information? 171
5.2 Several basic definitions of convolution? 174
5.2.1 Convolution kernel size 174
5.2.2 Step size of the convolution kernel 174
5.2.3 Edge Filling 174
5.2.4 Input and Output Channels 174
5.3 Convolution network type classification? 174
5.3.1 Ordinary Convolution 174
5.3.2 Expansion Convolution 175
5.3.3 Transposition Convolution 176
5.3.4 Separable Convolution 177
5.3 Schematic of 12 different types of 2D convolution? 178
5.4 What is the difference between 2D convolution and 3D convolution? 181
5.4.1 2D Convolution 181
5.4.2 3D Convolution 182
5.5 What are pooling methods? 183
5.5.1 General Pooling 183
5.5.2 Overlapping Pooling (OverlappingPooling) 184
5.5.3 Spatial Pyramid Pooling 184
5.6 1x1 convolution? 186
5.7 What is the difference between the convolutional layer and the pooled layer? 187
5.8 Does a larger convolution kernel, improve the kernel? 189
5.9 Can each convolution use only one size of convolution kernel? 189
5.10 How can I reduce the amount of convolutional parameters? 190
5.11 Must convolution operations consider both channels and zones? 191
5.12 What are the benefits of using wide convolution? 192
5.12.1 Narrow Convolution and Wide Convolution 192
5.12.2 Why use wide convolution? 192
5.13 Which depth of the convolutional layer output is the same as the number of parts? 192
5.14 How do I get the depth of the convolutional layer output? 193
5.15 Is the activation function usually placed after the operation of the convolutional neural network? 194
5.16 How do you understand that the maximum pooling layer is a little smaller? 194
5.17 Understanding Image Convolution and Deconvolution 194
5.17.1 Image Convolution 194
5.17.2 Image Deconvolution 196
5.18 Image Size Calculation after Different Convolutions? 198
5.18.1 Type division 198
5.18.2 Calculation formula 199
5.19 Step size, fill size and input and output relationship summary? 199
5.19.1 No 0 padding, unit step size 200
5.19.2 Zero fill, unit step size 200
5.19.3 Not filled, non-unit step size 202
5.19.4 Zero padding, non-unit step size 202
5.20 Understanding deconvolution and checkerboard effects 204
5.20.1 Why does the board phenomenon appear? 204
5.20.2 What methods can avoid the checkerboard effect? 205
5.21 CNN main calculation bottleneck? 207
5.22 CNN parameter experience setting 207
5.23 Summary of methods for improving generalization ability 208
5.23.1 Main methods 208
5.23.2 Experimental proof 208
5.24 What are the connections and differences between CNN and CLP? 213
5.24.1 Contact 213
5.24.2 Differences 213
5.25 Does CNN highlight commonality? 213
5.25.1 Local connection 213
5.25.2 Weight sharing 214
5.25.3 Pooling Operations 215
5.26 Similarities and differences between full convolution and Local-Conv 215
5.27 Example Understanding the Role of Local-Conv 215
5.28 Brief History of Convolutional Neural Networks 216
2) Answer:
P
References: