Search this site
Embedded Files
Lê Phong Phú
  • About Me!
  • AI Expert Roadmap
    • PyTorch
      • PyTorch Fundamentals
        • 1. Introduction to PyTorch
        • 2. Introduction to Computer Vision with PyTorch
        • 3. Introduction to Natural Language Processing with PyTorch
        • 4. Introduction to Audio Classification with PyTorch
      • Intermediate DL with Pytorch
        • 1_TrainingRobustNN
        • 2_Image&CNN
        • 3_Sequences&RNN
        • 4_Multi-Input&Multi-Output
    • Machine Learning
      • 01_ML_General
      • 02_ML_Supervised Learning
      • 03_ML_Unsupervised Learning
    • Mamba
      • 00_Sequence Modelling, S4 and Mamba
    • Transformers (CV&NLP)
      • NLNet
      • 01_Pure Transformer
        • ViT
        • Segformer
      • 02_Hybrid Transformer
        • DETR
        • Deformable DETR
        • DINO (Detection)
      • 99_Unfilter
        • LG-Transformer
        • Image GPT
        • Points as Queries
        • VST
        • MAXViT
        • ViTMAE-Detect
        • MAGNETO
        • AIT
        • MTV
        • PiT
        • Swin
        • PVTv2
        • PVT
        • FAVOR+
        • T2T-ViT
        • CaiT
        • CCT
        • DeiT
        • SSA
        • SA3D
    • [NLP] Natural Language Processing
      • 01_[LLMs] Large Language Models
      • [MoEs] Mixture of Experts
      • LLM Techniques
      • Attention is All You Need
      • Positional Encoding
      • Tokenization
      • MICLe
    • [CV] Computer Vision
      • MLP-based Classification
        • MLP-Mixer
        • FNet
        • EANet
      • 01_[SL] Supervised Learning
        • 01_Classification
          • Convolution Variants
          • 1x1 Convolution
          • EfficientNetV2
          • ConvNeXtV2
        • 02_Detection
          • ConvMixer
          • SOLO
          • YOLOX
          • YOLOR
          • AugFPN
          • BoT_Cls
          • BoF_OD
          • YOLOv3
          • YOLOv4
          • YOLOv5
          • YOLOv6
          • YOLOv7
          • YOLOv8
          • YOLOv9
          • YOLO-NAS
          • TPH-YOLOv5
          • TPH-YOLOv5++
          • ViTDET
        • 03_Segmentation
          • Object Instance Survey 2022
          • 01_Instance Segmentation
          • 02_Semantic Segmentation
          • 03_Panoptic Segmentation
          • 04_3D Segmentation
          • 05_Unsupervised Segmentation
          • BMask RCNN
          • ISTR
          • Transfuse
        • 04_[IS] Interactive Segmentation
          • Interactive Segmentation Techniques
          • 02_3D Interactive Segmentation
          • 03_Video Object Segmentation
          • SAM
          • HA_SAM
          • CFR-ICL
          • MST
          • ECONet
          • SimpleClick
          • FocusCut
          • f-BRS
          • iSegformer
        • 05_Object Tracking
          • 00_ObjectTracking
          • Sort
          • DeepSort
          • FairMOT
          • ByteTrack
          • StrongSORT
          • Tracktor
          • JDE
          • CenterTrack
          • PermaTrack
          • TransTrack
          • TrackFormer
          • BoT-SORT
        • 06_Face Recognition
        • 07_Image Stitching
        • 08_Image Restoration
        • 06_Refinement
          • BPR
        • 10_Scene Understanding
          • CPNet
        • 11_Human Pose Estimation
          • 3D Human Pose
          • Human Pose
        • 12_[SR] Super Resolution
          • Bicubic++
        • 13_VideoPropagation
        • 14_Image Mating
        • 15_Knowledge Distillation
        • 16_Others
      • 02_[UL] Unsupervised Learning
        • 00_Unsupervised Learning
        • 02_Deep Clustering
          • 00_K_Clusters Decision
          • Deep Cluster
          • Cluster Fit
          • DEC
          • Improving Relational Regularized Autoencoders with Spherical Sliced Fused G
          • Taxanomy
          • DeepDPM
          • BCL
          • VaDE
          • t-SNE
          • Tree-SNE
        • 04_Diffusional Models
      • 03_[SSL] Self-Supervised Learning
        • 00_Self-Supervised Learning
        • 01_Contrastive Learning
          • CPC
          • DIM
          • CMC
          • AMDIM
          • SimCLR
          • MoCo
          • MoCov2
          • YADIM
          • VICReg
          • CSL
          • Towards Domain-Agnostic Contrastive Learning
          • Non-Parametric Instance Discrimination
          • Video Contrastive Learning with Global Context
          • SupCon
          • Barlow Twin
        • 02_Predictive Tasks
        • 03_Bootstrapping
          • BYOL
        • 04_Regularization
        • 05_Masked Image Models
          • Patch Localization
          • MAE
          • SimMIM
          • DINO
        • 06_Pretext Tasks
          • PIRL
        • 07_Clustering-based
          • SwAV
      • 04_Semi-Supervised Learning
        • Fully-/Semi-/Weakly-/ Learning
        • 01_Self-training
          • Pseudo-label
          • Noisy Student
        • 02_Consistency Regularization
          • Temporal Ensembling
          • Mean Teacher
          • VAT
          • UDA
        • 03_Hybrid Methods
          • MixUp
          • MixMatch
          • ReMixMatch
          • FixMatch
          • FixMatch (unmerge)
      • 05_Multi-learning Paradigm
        • 00_Multi-learning
        • 01_Multitask
        • Gradient Surgery
        • EtE Multi-task Learning with Attention
        • MTL for Dense Predictions
        • MTL using Uncertainty
        • Which Task learned together
        • GradNorm
        • OM-Net
        • 06_Multi-task Learning
      • 06_Generative Models
        • 00_Generative Models
        • 01_Autoencoders
          • AE vs Others
          • Sparse AE
          • Denoising AE
          • Contractive AE
          • Variational AE
          • DELG
        • 02_GAN
      • Graph Convolutional Networks
        • 00_Graph Convolutional Networks
      • Neural Radiance Fields (NeRFs)
      • Deep Belief Networks
    • Multimodal Models
    • Bag of Freebies - BOF
      • 01_Augmentation
        • Mosaic
        • Cut Out
        • Mix Up
      • 02_Loss Functions
        • 01_Classification Loss
        • 02_Segmentation Loss
        • 03_Object Detection Loss
        • 04_Self-Supervised Loss
        • 05_Interactive Segmentation Loss
      • 03_Optimizer
      • 04_Normalization
        • 00_Normalization
      • 05_Regularization
      • 06_Label Assignment
        • 00_Label Assignment
        • OTA
        • SimOTA
      • 07_Auxiliary Head
    • Bag of Specials - BoS
      • Feature Pyramid
        • RCNet
      • Receptive Field
      • Attention
        • 00_Attention Modules
        • SENet
        • CBAM
        • DANet
        • SDANet
        • AttaNet
        • HaloNets
        • GCNet
        • DeepSquare
        • LBAM
        • External-Attention
        • PCT
        • Residual Attention
        • DCANet
        • GANet
        • Triplet Attention
        • Lambda Networks
        • ACTION
        • VAN
        • SegNeXt
      • Local-/Global- Features
        • Unifying Nonlocal Blocks for Neural Networks
        • Local Features
        • Global Features
      • Activation Functions
        • SiLU dSiLU
      • Post-Processing
        • Soft-NMS
        • NMW
        • WBF
      • Sliding Window
      • Graph Networks
      • Feature Fusion/Integration
      • Data-Centric
    • Others
      • Selected Top-Conference Papers
        • AAAI2021_Papers
        • CVPR2021_Papers
        • ECCV2020_Papers
        • ICCV2021_Papers
        • ICLM2022_Papers
      • Cheat Sheets
        • Pandas
      • Conference Schedule
  • Data Science
    • 03_DS_Discrete Distribution
    • Data Scientist Professional
      • 3. Statistical Experimentation Theory
      • 4. Statistical Experimentation in Python
      • 5. Model development in Python
      • 7. Data Management in SQL
    • Data...
    • ETL
    • Airflow
  • Cloud Computing
    • Azure Data Fundamental
    • Amazon Web Services
      • AWS - Cloud 101
      • AWS - Machine Learning Foundation (Lab)
        • 1. Introduction to MLF
        • 2. AI and ML
        • 3. ML Pipeline
        • 4. ML Tools and Services
        • 5. Wrapping it Up
      • AWS - Cloud Practitioner Essentials
      • AWS - GenAI
    • Google Cloud
    • IBM Watson
  • Big Data
    • PySpark
      • Introduction to PySpark
        • 1. Getting to know PySpark
        • 2. Manipulating Data
        • 3. Getting Started with ML Pipelines
        • 4. Model Tuning and Selection
      • Big Data Fundamentals with PySpark
        • 1. Introduction to BigData Analysis with Spark
        • 2. Programming in PySpark RDD’s
        • 3. PySpark SQL & DataFrames
        • 4. Machine Learning with PySpark MLlib
  • English
    • Reading
    • Listening
    • Speaking
      • Speaking_Part1
        • 1_Speaking Part 1
        • 2_Speaking Part 1
        • 3_Speaking Part 1
        • 4_Speaking Part 1
        • 5_Speaking Part 1
        • 6_Speaking Part 1
        • 7_Speaking Part 1
        • 8_Speaking Part 1
        • 9_Speaking Part 1
        • 10_Speaking Part 1
        • 11_Speaking Part 1
        • 12_Speaking Part 1
        • 13_Speaking Part 1
        • 14_Speaking Part 1
        • 15_Speaking Part 1
        • 16_Speaking Part 1
        • 17_Speaking Part 1
        • 18_Speaking Part 1
        • 19_Speaking Part 1
        • 20_Speaking Part 1
        • 21_Speaking Part 1
        • 22_Speaking Part 1
        • 23_Speaking Part 1
      • Speaking_Part2
        • 1_Speaking Part 2
        • 2_Speaking Part 2
        • 3_Speaking Part 2
        • 4_Speaking Part 2
        • 5_Speaking Part 2
        • 6_Speaking Part 2
        • 7_Speaking Part 2
        • 8_Speaking Part 2
        • 9_Speaking Part 2
        • 10_Speaking Part 2
        • 11_Speaking Part 2
        • 12_Speaking Part 2
        • 13_Speaking Part 2
        • 14_Speaking Part 2
        • 15_Speaking Part 2
        • 16_Speaking Part 2
        • 17_Speaking Part 2
        • 18_Speaking Part 2
        • 19_Speaking Part 2
        • 20_Speaking Part 2
        • People
        • Places
          • Visited House
        • Events
        • Activities
          • Interesting Job
        • Things
      • Speaking_Part3
        • Advertisements
        • Outdoor Activities
        • Navigation and Exploration
        • Fast Food
        • Air Pollution
        • Free Time
        • Interesting Movie
        • Gifts
        • Independence in Children
        • Noisy
        • Complain
        • T-shirts
        • Value of Money
        • Restaurant
        • Global
        • Relaxation
        • Special Places
      • Mixed-Test
        • 01_Mix_Language
    • Writing
      • Writing_Task1
        • Paraphrase
        • Overview Sentence
        • Grammar
        • Charts
          • Line - Average Montly Temperatures
          • Line - Fuels
          • Line - Birth Rate
          • Line - River Water
          • Line - U.S Energy
          • Line - Areas of Crime
          • Line - Renewable Energy
          • Line - Oversea Visitors
          • Chart - People ate in the UK
          • Chart - Music Event Attendance
          • Chart - Wind Energy
          • Chart - Children Attend Sports in Australia
          • Chart - Weekly Hours in Australia
          • Chart - Films released vs Tickets sold
          • Chart - Average Retirement Age
        • Process
        • Maps
          • Library Ground
        • Table
        • Multiple Graphs
          • Life Expectancy
      • Writing_Task2
        • Opinion Essay
          • Higher Salary
          • Goal of Schools
          • Local History
          • Retirement Age
          • Happy Society
          • Food Necessary
          • Pay for more Art
          • Eradicate Poverty
          • Team Activities
          • Wild Animals and Birds
        • Discussion Essay
          • Sports
          • Make Money
          • Crime punished
          • Equipment for Student
          • Keep a Gun
        • Advantages and Disadvantages Essay
          • Live Away
          • Transform to Farms
        • Problem-Solution Essay
          • Extreme Sports
          • Spend Time Away From Families
      • Complex Sentence
      • If, Wish, Hope
    • Synonym Common Mistakes
    • Phrasal Verbs
    • TOEIC 990
  • Interview
    • Deep Learning Questions
      • C1_Mathematical Foundation
      • C2_Fundamentals of ML
      • C3_Fundamentals of DL
      • C4_Classic Network
      • C5_CNN
      • C6_RNN
      • C7_Target Detection
      • C8_Image Segmentation
      • C9_Reinforcement Learning
      • C10_Migration Learning
      • C13_Optimization Algorithm
      • C14_Super Parameter Adjustment
      • C15_Hetorogeneous Computing
    • Data Science Questions
  • Courses (Uni and Mooc)
    • AI Open Courses
    • DS Certificates
    • IBM Gen AI Engineering Professional Certificate
      • 10. Generative AI and LLMs: Architecture and Data Preparation
      • 11. Gen AI Foundational Models for NLP & Language Understanding
      • 12. Gen AI Language Modeling with Transformers
        • Module 1 - Fundamental Concepts of Transformer Architecture
        • Module 2 - Advanced Concepts of Transformer Architecture
      • 13. Generative AI Engineering and Fine-Tuning Transformers
      • 14. Generative AI Advanced Fine-Tuning for LLMs
      • 15. Fundamentals of AI Agents using RAG and Langchain
        • Module 1 - RAG Framework
        • Module 2 - Prompt Engineering and LangChain
      • 16. Project: Generative AI Applications with RAG and LangChain
    • Data Science Foundations: Data Structures and Algorithms Specialization
    • Flask - AI Applications
      • 1. Packaging Concepts
      • 2. Web App Deployment
      • 3. Creating AI Application
        • Sentiment Analysis
        • Emotion Detector
      • Deploy Deep Learning Models using Flask
    • Docker, Kubernetes & OpenShift
      • 1. Containers and Containerization
      • 2. Kubernetes Basics
      • 3. Managing Applications with Kubernetes
      • 4. The Kubernetes Ecosystem
      • 5. Final Assignments
    • Data Structures
      • 1. Introduction to DS&A
    • Algorithms
      • QE - Algorithms
      • Sorting Algorithms
        • Binary Search
        • Insertion Sort
        • Merge Sort
        • Quick sort
        • Heap sort
      • Divide and Conquer
      • Greedy Algorithm
      • Dynamic Programming
    • Operating System
      • QE - Operating System
      • 00_Operating System
    • CS231n Deep Learning for Computer Vision
      • 13. Self-Supervised Learning
    • CS480 Introduction to Machine Learning
      • 19. Attention and Transformer Networks
    • CS330 Multi-task and Meta Learning
      • 1. What is Multi-task Learning
    • Processing the Environment
      • Attention
    • Open VINO
    • Metaverse
      • 00_Metaverse
      • Spark AR
  • Research Projects
    • PPE Detection
      • Few-shot Data Sampling
    • Multiple Object Tracking
      • In-place Augmentation
    • Deep Clustering
      • Metrics
    • Defect Detection
      • 01_Defect_Improvement
      • Dataset: MVTec
      • Mixed supervision for surface-defect detection:
      • Practical Defect Detection
      • (Survey) Fabric Defect Detection
      • (Summary) Fabric Defect Detection
    • Medical Images
      • 01_Lung_Improvement
      • SANet
      • AnaXNet
      • 3D_EtoE Lung Cancer Screening
      • Semantics-enriched Representation
      • Attend And Compare
      • Recent Works
      • Kaggle_Medical Images
  • AI Engineer
  • Financial Invesment
    • 01_TPTrading
    • 02_BCTC
    • 03_Demand Side Platform (DSP)
    • 04_Business Models
    • Trading
      • 01_Technical Analysis
      • 02_Mentality
      • 03_Support and Resistance
  • Books
    • AI Books
    • Books
      • Persuasion IQ
      • Communication Skills
      • 48 Hours a Day
      • Maslow's Pyramid
      • MBTI
      • Tư Duy Ngược
    • Audio Books
  • Project Management
    • PM Methods
      • Agile
      • Scrum
      • Kanban
    • Foundations of PM
      • Module 1
      • Module 2
      • Module 3
      • Module 4
    • Project Initiation: Starting a Successul Projet
      • Module 1
      • Module 2
      • Module 3
      • Module 4
    • Project Planning: Putting It All Together
      • Module 1
    • Project Execution: Running the Project
    • Agile Project Management
    • Capstone: Applying Project Management in the Real World
  • Administrator
Lê Phong Phú
  • About Me!
  • AI Expert Roadmap
    • PyTorch
      • PyTorch Fundamentals
        • 1. Introduction to PyTorch
        • 2. Introduction to Computer Vision with PyTorch
        • 3. Introduction to Natural Language Processing with PyTorch
        • 4. Introduction to Audio Classification with PyTorch
      • Intermediate DL with Pytorch
        • 1_TrainingRobustNN
        • 2_Image&CNN
        • 3_Sequences&RNN
        • 4_Multi-Input&Multi-Output
    • Machine Learning
      • 01_ML_General
      • 02_ML_Supervised Learning
      • 03_ML_Unsupervised Learning
    • Mamba
      • 00_Sequence Modelling, S4 and Mamba
    • Transformers (CV&NLP)
      • NLNet
      • 01_Pure Transformer
        • ViT
        • Segformer
      • 02_Hybrid Transformer
        • DETR
        • Deformable DETR
        • DINO (Detection)
      • 99_Unfilter
        • LG-Transformer
        • Image GPT
        • Points as Queries
        • VST
        • MAXViT
        • ViTMAE-Detect
        • MAGNETO
        • AIT
        • MTV
        • PiT
        • Swin
        • PVTv2
        • PVT
        • FAVOR+
        • T2T-ViT
        • CaiT
        • CCT
        • DeiT
        • SSA
        • SA3D
    • [NLP] Natural Language Processing
      • 01_[LLMs] Large Language Models
      • [MoEs] Mixture of Experts
      • LLM Techniques
      • Attention is All You Need
      • Positional Encoding
      • Tokenization
      • MICLe
    • [CV] Computer Vision
      • MLP-based Classification
        • MLP-Mixer
        • FNet
        • EANet
      • 01_[SL] Supervised Learning
        • 01_Classification
          • Convolution Variants
          • 1x1 Convolution
          • EfficientNetV2
          • ConvNeXtV2
        • 02_Detection
          • ConvMixer
          • SOLO
          • YOLOX
          • YOLOR
          • AugFPN
          • BoT_Cls
          • BoF_OD
          • YOLOv3
          • YOLOv4
          • YOLOv5
          • YOLOv6
          • YOLOv7
          • YOLOv8
          • YOLOv9
          • YOLO-NAS
          • TPH-YOLOv5
          • TPH-YOLOv5++
          • ViTDET
        • 03_Segmentation
          • Object Instance Survey 2022
          • 01_Instance Segmentation
          • 02_Semantic Segmentation
          • 03_Panoptic Segmentation
          • 04_3D Segmentation
          • 05_Unsupervised Segmentation
          • BMask RCNN
          • ISTR
          • Transfuse
        • 04_[IS] Interactive Segmentation
          • Interactive Segmentation Techniques
          • 02_3D Interactive Segmentation
          • 03_Video Object Segmentation
          • SAM
          • HA_SAM
          • CFR-ICL
          • MST
          • ECONet
          • SimpleClick
          • FocusCut
          • f-BRS
          • iSegformer
        • 05_Object Tracking
          • 00_ObjectTracking
          • Sort
          • DeepSort
          • FairMOT
          • ByteTrack
          • StrongSORT
          • Tracktor
          • JDE
          • CenterTrack
          • PermaTrack
          • TransTrack
          • TrackFormer
          • BoT-SORT
        • 06_Face Recognition
        • 07_Image Stitching
        • 08_Image Restoration
        • 06_Refinement
          • BPR
        • 10_Scene Understanding
          • CPNet
        • 11_Human Pose Estimation
          • 3D Human Pose
          • Human Pose
        • 12_[SR] Super Resolution
          • Bicubic++
        • 13_VideoPropagation
        • 14_Image Mating
        • 15_Knowledge Distillation
        • 16_Others
      • 02_[UL] Unsupervised Learning
        • 00_Unsupervised Learning
        • 02_Deep Clustering
          • 00_K_Clusters Decision
          • Deep Cluster
          • Cluster Fit
          • DEC
          • Improving Relational Regularized Autoencoders with Spherical Sliced Fused G
          • Taxanomy
          • DeepDPM
          • BCL
          • VaDE
          • t-SNE
          • Tree-SNE
        • 04_Diffusional Models
      • 03_[SSL] Self-Supervised Learning
        • 00_Self-Supervised Learning
        • 01_Contrastive Learning
          • CPC
          • DIM
          • CMC
          • AMDIM
          • SimCLR
          • MoCo
          • MoCov2
          • YADIM
          • VICReg
          • CSL
          • Towards Domain-Agnostic Contrastive Learning
          • Non-Parametric Instance Discrimination
          • Video Contrastive Learning with Global Context
          • SupCon
          • Barlow Twin
        • 02_Predictive Tasks
        • 03_Bootstrapping
          • BYOL
        • 04_Regularization
        • 05_Masked Image Models
          • Patch Localization
          • MAE
          • SimMIM
          • DINO
        • 06_Pretext Tasks
          • PIRL
        • 07_Clustering-based
          • SwAV
      • 04_Semi-Supervised Learning
        • Fully-/Semi-/Weakly-/ Learning
        • 01_Self-training
          • Pseudo-label
          • Noisy Student
        • 02_Consistency Regularization
          • Temporal Ensembling
          • Mean Teacher
          • VAT
          • UDA
        • 03_Hybrid Methods
          • MixUp
          • MixMatch
          • ReMixMatch
          • FixMatch
          • FixMatch (unmerge)
      • 05_Multi-learning Paradigm
        • 00_Multi-learning
        • 01_Multitask
        • Gradient Surgery
        • EtE Multi-task Learning with Attention
        • MTL for Dense Predictions
        • MTL using Uncertainty
        • Which Task learned together
        • GradNorm
        • OM-Net
        • 06_Multi-task Learning
      • 06_Generative Models
        • 00_Generative Models
        • 01_Autoencoders
          • AE vs Others
          • Sparse AE
          • Denoising AE
          • Contractive AE
          • Variational AE
          • DELG
        • 02_GAN
      • Graph Convolutional Networks
        • 00_Graph Convolutional Networks
      • Neural Radiance Fields (NeRFs)
      • Deep Belief Networks
    • Multimodal Models
    • Bag of Freebies - BOF
      • 01_Augmentation
        • Mosaic
        • Cut Out
        • Mix Up
      • 02_Loss Functions
        • 01_Classification Loss
        • 02_Segmentation Loss
        • 03_Object Detection Loss
        • 04_Self-Supervised Loss
        • 05_Interactive Segmentation Loss
      • 03_Optimizer
      • 04_Normalization
        • 00_Normalization
      • 05_Regularization
      • 06_Label Assignment
        • 00_Label Assignment
        • OTA
        • SimOTA
      • 07_Auxiliary Head
    • Bag of Specials - BoS
      • Feature Pyramid
        • RCNet
      • Receptive Field
      • Attention
        • 00_Attention Modules
        • SENet
        • CBAM
        • DANet
        • SDANet
        • AttaNet
        • HaloNets
        • GCNet
        • DeepSquare
        • LBAM
        • External-Attention
        • PCT
        • Residual Attention
        • DCANet
        • GANet
        • Triplet Attention
        • Lambda Networks
        • ACTION
        • VAN
        • SegNeXt
      • Local-/Global- Features
        • Unifying Nonlocal Blocks for Neural Networks
        • Local Features
        • Global Features
      • Activation Functions
        • SiLU dSiLU
      • Post-Processing
        • Soft-NMS
        • NMW
        • WBF
      • Sliding Window
      • Graph Networks
      • Feature Fusion/Integration
      • Data-Centric
    • Others
      • Selected Top-Conference Papers
        • AAAI2021_Papers
        • CVPR2021_Papers
        • ECCV2020_Papers
        • ICCV2021_Papers
        • ICLM2022_Papers
      • Cheat Sheets
        • Pandas
      • Conference Schedule
  • Data Science
    • 03_DS_Discrete Distribution
    • Data Scientist Professional
      • 3. Statistical Experimentation Theory
      • 4. Statistical Experimentation in Python
      • 5. Model development in Python
      • 7. Data Management in SQL
    • Data...
    • ETL
    • Airflow
  • Cloud Computing
    • Azure Data Fundamental
    • Amazon Web Services
      • AWS - Cloud 101
      • AWS - Machine Learning Foundation (Lab)
        • 1. Introduction to MLF
        • 2. AI and ML
        • 3. ML Pipeline
        • 4. ML Tools and Services
        • 5. Wrapping it Up
      • AWS - Cloud Practitioner Essentials
      • AWS - GenAI
    • Google Cloud
    • IBM Watson
  • Big Data
    • PySpark
      • Introduction to PySpark
        • 1. Getting to know PySpark
        • 2. Manipulating Data
        • 3. Getting Started with ML Pipelines
        • 4. Model Tuning and Selection
      • Big Data Fundamentals with PySpark
        • 1. Introduction to BigData Analysis with Spark
        • 2. Programming in PySpark RDD’s
        • 3. PySpark SQL & DataFrames
        • 4. Machine Learning with PySpark MLlib
  • English
    • Reading
    • Listening
    • Speaking
      • Speaking_Part1
        • 1_Speaking Part 1
        • 2_Speaking Part 1
        • 3_Speaking Part 1
        • 4_Speaking Part 1
        • 5_Speaking Part 1
        • 6_Speaking Part 1
        • 7_Speaking Part 1
        • 8_Speaking Part 1
        • 9_Speaking Part 1
        • 10_Speaking Part 1
        • 11_Speaking Part 1
        • 12_Speaking Part 1
        • 13_Speaking Part 1
        • 14_Speaking Part 1
        • 15_Speaking Part 1
        • 16_Speaking Part 1
        • 17_Speaking Part 1
        • 18_Speaking Part 1
        • 19_Speaking Part 1
        • 20_Speaking Part 1
        • 21_Speaking Part 1
        • 22_Speaking Part 1
        • 23_Speaking Part 1
      • Speaking_Part2
        • 1_Speaking Part 2
        • 2_Speaking Part 2
        • 3_Speaking Part 2
        • 4_Speaking Part 2
        • 5_Speaking Part 2
        • 6_Speaking Part 2
        • 7_Speaking Part 2
        • 8_Speaking Part 2
        • 9_Speaking Part 2
        • 10_Speaking Part 2
        • 11_Speaking Part 2
        • 12_Speaking Part 2
        • 13_Speaking Part 2
        • 14_Speaking Part 2
        • 15_Speaking Part 2
        • 16_Speaking Part 2
        • 17_Speaking Part 2
        • 18_Speaking Part 2
        • 19_Speaking Part 2
        • 20_Speaking Part 2
        • People
        • Places
          • Visited House
        • Events
        • Activities
          • Interesting Job
        • Things
      • Speaking_Part3
        • Advertisements
        • Outdoor Activities
        • Navigation and Exploration
        • Fast Food
        • Air Pollution
        • Free Time
        • Interesting Movie
        • Gifts
        • Independence in Children
        • Noisy
        • Complain
        • T-shirts
        • Value of Money
        • Restaurant
        • Global
        • Relaxation
        • Special Places
      • Mixed-Test
        • 01_Mix_Language
    • Writing
      • Writing_Task1
        • Paraphrase
        • Overview Sentence
        • Grammar
        • Charts
          • Line - Average Montly Temperatures
          • Line - Fuels
          • Line - Birth Rate
          • Line - River Water
          • Line - U.S Energy
          • Line - Areas of Crime
          • Line - Renewable Energy
          • Line - Oversea Visitors
          • Chart - People ate in the UK
          • Chart - Music Event Attendance
          • Chart - Wind Energy
          • Chart - Children Attend Sports in Australia
          • Chart - Weekly Hours in Australia
          • Chart - Films released vs Tickets sold
          • Chart - Average Retirement Age
        • Process
        • Maps
          • Library Ground
        • Table
        • Multiple Graphs
          • Life Expectancy
      • Writing_Task2
        • Opinion Essay
          • Higher Salary
          • Goal of Schools
          • Local History
          • Retirement Age
          • Happy Society
          • Food Necessary
          • Pay for more Art
          • Eradicate Poverty
          • Team Activities
          • Wild Animals and Birds
        • Discussion Essay
          • Sports
          • Make Money
          • Crime punished
          • Equipment for Student
          • Keep a Gun
        • Advantages and Disadvantages Essay
          • Live Away
          • Transform to Farms
        • Problem-Solution Essay
          • Extreme Sports
          • Spend Time Away From Families
      • Complex Sentence
      • If, Wish, Hope
    • Synonym Common Mistakes
    • Phrasal Verbs
    • TOEIC 990
  • Interview
    • Deep Learning Questions
      • C1_Mathematical Foundation
      • C2_Fundamentals of ML
      • C3_Fundamentals of DL
      • C4_Classic Network
      • C5_CNN
      • C6_RNN
      • C7_Target Detection
      • C8_Image Segmentation
      • C9_Reinforcement Learning
      • C10_Migration Learning
      • C13_Optimization Algorithm
      • C14_Super Parameter Adjustment
      • C15_Hetorogeneous Computing
    • Data Science Questions
  • Courses (Uni and Mooc)
    • AI Open Courses
    • DS Certificates
    • IBM Gen AI Engineering Professional Certificate
      • 10. Generative AI and LLMs: Architecture and Data Preparation
      • 11. Gen AI Foundational Models for NLP & Language Understanding
      • 12. Gen AI Language Modeling with Transformers
        • Module 1 - Fundamental Concepts of Transformer Architecture
        • Module 2 - Advanced Concepts of Transformer Architecture
      • 13. Generative AI Engineering and Fine-Tuning Transformers
      • 14. Generative AI Advanced Fine-Tuning for LLMs
      • 15. Fundamentals of AI Agents using RAG and Langchain
        • Module 1 - RAG Framework
        • Module 2 - Prompt Engineering and LangChain
      • 16. Project: Generative AI Applications with RAG and LangChain
    • Data Science Foundations: Data Structures and Algorithms Specialization
    • Flask - AI Applications
      • 1. Packaging Concepts
      • 2. Web App Deployment
      • 3. Creating AI Application
        • Sentiment Analysis
        • Emotion Detector
      • Deploy Deep Learning Models using Flask
    • Docker, Kubernetes & OpenShift
      • 1. Containers and Containerization
      • 2. Kubernetes Basics
      • 3. Managing Applications with Kubernetes
      • 4. The Kubernetes Ecosystem
      • 5. Final Assignments
    • Data Structures
      • 1. Introduction to DS&A
    • Algorithms
      • QE - Algorithms
      • Sorting Algorithms
        • Binary Search
        • Insertion Sort
        • Merge Sort
        • Quick sort
        • Heap sort
      • Divide and Conquer
      • Greedy Algorithm
      • Dynamic Programming
    • Operating System
      • QE - Operating System
      • 00_Operating System
    • CS231n Deep Learning for Computer Vision
      • 13. Self-Supervised Learning
    • CS480 Introduction to Machine Learning
      • 19. Attention and Transformer Networks
    • CS330 Multi-task and Meta Learning
      • 1. What is Multi-task Learning
    • Processing the Environment
      • Attention
    • Open VINO
    • Metaverse
      • 00_Metaverse
      • Spark AR
  • Research Projects
    • PPE Detection
      • Few-shot Data Sampling
    • Multiple Object Tracking
      • In-place Augmentation
    • Deep Clustering
      • Metrics
    • Defect Detection
      • 01_Defect_Improvement
      • Dataset: MVTec
      • Mixed supervision for surface-defect detection:
      • Practical Defect Detection
      • (Survey) Fabric Defect Detection
      • (Summary) Fabric Defect Detection
    • Medical Images
      • 01_Lung_Improvement
      • SANet
      • AnaXNet
      • 3D_EtoE Lung Cancer Screening
      • Semantics-enriched Representation
      • Attend And Compare
      • Recent Works
      • Kaggle_Medical Images
  • AI Engineer
  • Financial Invesment
    • 01_TPTrading
    • 02_BCTC
    • 03_Demand Side Platform (DSP)
    • 04_Business Models
    • Trading
      • 01_Technical Analysis
      • 02_Mentality
      • 03_Support and Resistance
  • Books
    • AI Books
    • Books
      • Persuasion IQ
      • Communication Skills
      • 48 Hours a Day
      • Maslow's Pyramid
      • MBTI
      • Tư Duy Ngược
    • Audio Books
  • Project Management
    • PM Methods
      • Agile
      • Scrum
      • Kanban
    • Foundations of PM
      • Module 1
      • Module 2
      • Module 3
      • Module 4
    • Project Initiation: Starting a Successul Projet
      • Module 1
      • Module 2
      • Module 3
      • Module 4
    • Project Planning: Putting It All Together
      • Module 1
    • Project Execution: Running the Project
    • Agile Project Management
    • Capstone: Applying Project Management in the Real World
  • Administrator
  • More
    • About Me!
    • AI Expert Roadmap
      • PyTorch
        • PyTorch Fundamentals
          • 1. Introduction to PyTorch
          • 2. Introduction to Computer Vision with PyTorch
          • 3. Introduction to Natural Language Processing with PyTorch
          • 4. Introduction to Audio Classification with PyTorch
        • Intermediate DL with Pytorch
          • 1_TrainingRobustNN
          • 2_Image&CNN
          • 3_Sequences&RNN
          • 4_Multi-Input&Multi-Output
      • Machine Learning
        • 01_ML_General
        • 02_ML_Supervised Learning
        • 03_ML_Unsupervised Learning
      • Mamba
        • 00_Sequence Modelling, S4 and Mamba
      • Transformers (CV&NLP)
        • NLNet
        • 01_Pure Transformer
          • ViT
          • Segformer
        • 02_Hybrid Transformer
          • DETR
          • Deformable DETR
          • DINO (Detection)
        • 99_Unfilter
          • LG-Transformer
          • Image GPT
          • Points as Queries
          • VST
          • MAXViT
          • ViTMAE-Detect
          • MAGNETO
          • AIT
          • MTV
          • PiT
          • Swin
          • PVTv2
          • PVT
          • FAVOR+
          • T2T-ViT
          • CaiT
          • CCT
          • DeiT
          • SSA
          • SA3D
      • [NLP] Natural Language Processing
        • 01_[LLMs] Large Language Models
        • [MoEs] Mixture of Experts
        • LLM Techniques
        • Attention is All You Need
        • Positional Encoding
        • Tokenization
        • MICLe
      • [CV] Computer Vision
        • MLP-based Classification
          • MLP-Mixer
          • FNet
          • EANet
        • 01_[SL] Supervised Learning
          • 01_Classification
            • Convolution Variants
            • 1x1 Convolution
            • EfficientNetV2
            • ConvNeXtV2
          • 02_Detection
            • ConvMixer
            • SOLO
            • YOLOX
            • YOLOR
            • AugFPN
            • BoT_Cls
            • BoF_OD
            • YOLOv3
            • YOLOv4
            • YOLOv5
            • YOLOv6
            • YOLOv7
            • YOLOv8
            • YOLOv9
            • YOLO-NAS
            • TPH-YOLOv5
            • TPH-YOLOv5++
            • ViTDET
          • 03_Segmentation
            • Object Instance Survey 2022
            • 01_Instance Segmentation
            • 02_Semantic Segmentation
            • 03_Panoptic Segmentation
            • 04_3D Segmentation
            • 05_Unsupervised Segmentation
            • BMask RCNN
            • ISTR
            • Transfuse
          • 04_[IS] Interactive Segmentation
            • Interactive Segmentation Techniques
            • 02_3D Interactive Segmentation
            • 03_Video Object Segmentation
            • SAM
            • HA_SAM
            • CFR-ICL
            • MST
            • ECONet
            • SimpleClick
            • FocusCut
            • f-BRS
            • iSegformer
          • 05_Object Tracking
            • 00_ObjectTracking
            • Sort
            • DeepSort
            • FairMOT
            • ByteTrack
            • StrongSORT
            • Tracktor
            • JDE
            • CenterTrack
            • PermaTrack
            • TransTrack
            • TrackFormer
            • BoT-SORT
          • 06_Face Recognition
          • 07_Image Stitching
          • 08_Image Restoration
          • 06_Refinement
            • BPR
          • 10_Scene Understanding
            • CPNet
          • 11_Human Pose Estimation
            • 3D Human Pose
            • Human Pose
          • 12_[SR] Super Resolution
            • Bicubic++
          • 13_VideoPropagation
          • 14_Image Mating
          • 15_Knowledge Distillation
          • 16_Others
        • 02_[UL] Unsupervised Learning
          • 00_Unsupervised Learning
          • 02_Deep Clustering
            • 00_K_Clusters Decision
            • Deep Cluster
            • Cluster Fit
            • DEC
            • Improving Relational Regularized Autoencoders with Spherical Sliced Fused G
            • Taxanomy
            • DeepDPM
            • BCL
            • VaDE
            • t-SNE
            • Tree-SNE
          • 04_Diffusional Models
        • 03_[SSL] Self-Supervised Learning
          • 00_Self-Supervised Learning
          • 01_Contrastive Learning
            • CPC
            • DIM
            • CMC
            • AMDIM
            • SimCLR
            • MoCo
            • MoCov2
            • YADIM
            • VICReg
            • CSL
            • Towards Domain-Agnostic Contrastive Learning
            • Non-Parametric Instance Discrimination
            • Video Contrastive Learning with Global Context
            • SupCon
            • Barlow Twin
          • 02_Predictive Tasks
          • 03_Bootstrapping
            • BYOL
          • 04_Regularization
          • 05_Masked Image Models
            • Patch Localization
            • MAE
            • SimMIM
            • DINO
          • 06_Pretext Tasks
            • PIRL
          • 07_Clustering-based
            • SwAV
        • 04_Semi-Supervised Learning
          • Fully-/Semi-/Weakly-/ Learning
          • 01_Self-training
            • Pseudo-label
            • Noisy Student
          • 02_Consistency Regularization
            • Temporal Ensembling
            • Mean Teacher
            • VAT
            • UDA
          • 03_Hybrid Methods
            • MixUp
            • MixMatch
            • ReMixMatch
            • FixMatch
            • FixMatch (unmerge)
        • 05_Multi-learning Paradigm
          • 00_Multi-learning
          • 01_Multitask
          • Gradient Surgery
          • EtE Multi-task Learning with Attention
          • MTL for Dense Predictions
          • MTL using Uncertainty
          • Which Task learned together
          • GradNorm
          • OM-Net
          • 06_Multi-task Learning
        • 06_Generative Models
          • 00_Generative Models
          • 01_Autoencoders
            • AE vs Others
            • Sparse AE
            • Denoising AE
            • Contractive AE
            • Variational AE
            • DELG
          • 02_GAN
        • Graph Convolutional Networks
          • 00_Graph Convolutional Networks
        • Neural Radiance Fields (NeRFs)
        • Deep Belief Networks
      • Multimodal Models
      • Bag of Freebies - BOF
        • 01_Augmentation
          • Mosaic
          • Cut Out
          • Mix Up
        • 02_Loss Functions
          • 01_Classification Loss
          • 02_Segmentation Loss
          • 03_Object Detection Loss
          • 04_Self-Supervised Loss
          • 05_Interactive Segmentation Loss
        • 03_Optimizer
        • 04_Normalization
          • 00_Normalization
        • 05_Regularization
        • 06_Label Assignment
          • 00_Label Assignment
          • OTA
          • SimOTA
        • 07_Auxiliary Head
      • Bag of Specials - BoS
        • Feature Pyramid
          • RCNet
        • Receptive Field
        • Attention
          • 00_Attention Modules
          • SENet
          • CBAM
          • DANet
          • SDANet
          • AttaNet
          • HaloNets
          • GCNet
          • DeepSquare
          • LBAM
          • External-Attention
          • PCT
          • Residual Attention
          • DCANet
          • GANet
          • Triplet Attention
          • Lambda Networks
          • ACTION
          • VAN
          • SegNeXt
        • Local-/Global- Features
          • Unifying Nonlocal Blocks for Neural Networks
          • Local Features
          • Global Features
        • Activation Functions
          • SiLU dSiLU
        • Post-Processing
          • Soft-NMS
          • NMW
          • WBF
        • Sliding Window
        • Graph Networks
        • Feature Fusion/Integration
        • Data-Centric
      • Others
        • Selected Top-Conference Papers
          • AAAI2021_Papers
          • CVPR2021_Papers
          • ECCV2020_Papers
          • ICCV2021_Papers
          • ICLM2022_Papers
        • Cheat Sheets
          • Pandas
        • Conference Schedule
    • Data Science
      • 03_DS_Discrete Distribution
      • Data Scientist Professional
        • 3. Statistical Experimentation Theory
        • 4. Statistical Experimentation in Python
        • 5. Model development in Python
        • 7. Data Management in SQL
      • Data...
      • ETL
      • Airflow
    • Cloud Computing
      • Azure Data Fundamental
      • Amazon Web Services
        • AWS - Cloud 101
        • AWS - Machine Learning Foundation (Lab)
          • 1. Introduction to MLF
          • 2. AI and ML
          • 3. ML Pipeline
          • 4. ML Tools and Services
          • 5. Wrapping it Up
        • AWS - Cloud Practitioner Essentials
        • AWS - GenAI
      • Google Cloud
      • IBM Watson
    • Big Data
      • PySpark
        • Introduction to PySpark
          • 1. Getting to know PySpark
          • 2. Manipulating Data
          • 3. Getting Started with ML Pipelines
          • 4. Model Tuning and Selection
        • Big Data Fundamentals with PySpark
          • 1. Introduction to BigData Analysis with Spark
          • 2. Programming in PySpark RDD’s
          • 3. PySpark SQL & DataFrames
          • 4. Machine Learning with PySpark MLlib
    • English
      • Reading
      • Listening
      • Speaking
        • Speaking_Part1
          • 1_Speaking Part 1
          • 2_Speaking Part 1
          • 3_Speaking Part 1
          • 4_Speaking Part 1
          • 5_Speaking Part 1
          • 6_Speaking Part 1
          • 7_Speaking Part 1
          • 8_Speaking Part 1
          • 9_Speaking Part 1
          • 10_Speaking Part 1
          • 11_Speaking Part 1
          • 12_Speaking Part 1
          • 13_Speaking Part 1
          • 14_Speaking Part 1
          • 15_Speaking Part 1
          • 16_Speaking Part 1
          • 17_Speaking Part 1
          • 18_Speaking Part 1
          • 19_Speaking Part 1
          • 20_Speaking Part 1
          • 21_Speaking Part 1
          • 22_Speaking Part 1
          • 23_Speaking Part 1
        • Speaking_Part2
          • 1_Speaking Part 2
          • 2_Speaking Part 2
          • 3_Speaking Part 2
          • 4_Speaking Part 2
          • 5_Speaking Part 2
          • 6_Speaking Part 2
          • 7_Speaking Part 2
          • 8_Speaking Part 2
          • 9_Speaking Part 2
          • 10_Speaking Part 2
          • 11_Speaking Part 2
          • 12_Speaking Part 2
          • 13_Speaking Part 2
          • 14_Speaking Part 2
          • 15_Speaking Part 2
          • 16_Speaking Part 2
          • 17_Speaking Part 2
          • 18_Speaking Part 2
          • 19_Speaking Part 2
          • 20_Speaking Part 2
          • People
          • Places
            • Visited House
          • Events
          • Activities
            • Interesting Job
          • Things
        • Speaking_Part3
          • Advertisements
          • Outdoor Activities
          • Navigation and Exploration
          • Fast Food
          • Air Pollution
          • Free Time
          • Interesting Movie
          • Gifts
          • Independence in Children
          • Noisy
          • Complain
          • T-shirts
          • Value of Money
          • Restaurant
          • Global
          • Relaxation
          • Special Places
        • Mixed-Test
          • 01_Mix_Language
      • Writing
        • Writing_Task1
          • Paraphrase
          • Overview Sentence
          • Grammar
          • Charts
            • Line - Average Montly Temperatures
            • Line - Fuels
            • Line - Birth Rate
            • Line - River Water
            • Line - U.S Energy
            • Line - Areas of Crime
            • Line - Renewable Energy
            • Line - Oversea Visitors
            • Chart - People ate in the UK
            • Chart - Music Event Attendance
            • Chart - Wind Energy
            • Chart - Children Attend Sports in Australia
            • Chart - Weekly Hours in Australia
            • Chart - Films released vs Tickets sold
            • Chart - Average Retirement Age
          • Process
          • Maps
            • Library Ground
          • Table
          • Multiple Graphs
            • Life Expectancy
        • Writing_Task2
          • Opinion Essay
            • Higher Salary
            • Goal of Schools
            • Local History
            • Retirement Age
            • Happy Society
            • Food Necessary
            • Pay for more Art
            • Eradicate Poverty
            • Team Activities
            • Wild Animals and Birds
          • Discussion Essay
            • Sports
            • Make Money
            • Crime punished
            • Equipment for Student
            • Keep a Gun
          • Advantages and Disadvantages Essay
            • Live Away
            • Transform to Farms
          • Problem-Solution Essay
            • Extreme Sports
            • Spend Time Away From Families
        • Complex Sentence
        • If, Wish, Hope
      • Synonym Common Mistakes
      • Phrasal Verbs
      • TOEIC 990
    • Interview
      • Deep Learning Questions
        • C1_Mathematical Foundation
        • C2_Fundamentals of ML
        • C3_Fundamentals of DL
        • C4_Classic Network
        • C5_CNN
        • C6_RNN
        • C7_Target Detection
        • C8_Image Segmentation
        • C9_Reinforcement Learning
        • C10_Migration Learning
        • C13_Optimization Algorithm
        • C14_Super Parameter Adjustment
        • C15_Hetorogeneous Computing
      • Data Science Questions
    • Courses (Uni and Mooc)
      • AI Open Courses
      • DS Certificates
      • IBM Gen AI Engineering Professional Certificate
        • 10. Generative AI and LLMs: Architecture and Data Preparation
        • 11. Gen AI Foundational Models for NLP & Language Understanding
        • 12. Gen AI Language Modeling with Transformers
          • Module 1 - Fundamental Concepts of Transformer Architecture
          • Module 2 - Advanced Concepts of Transformer Architecture
        • 13. Generative AI Engineering and Fine-Tuning Transformers
        • 14. Generative AI Advanced Fine-Tuning for LLMs
        • 15. Fundamentals of AI Agents using RAG and Langchain
          • Module 1 - RAG Framework
          • Module 2 - Prompt Engineering and LangChain
        • 16. Project: Generative AI Applications with RAG and LangChain
      • Data Science Foundations: Data Structures and Algorithms Specialization
      • Flask - AI Applications
        • 1. Packaging Concepts
        • 2. Web App Deployment
        • 3. Creating AI Application
          • Sentiment Analysis
          • Emotion Detector
        • Deploy Deep Learning Models using Flask
      • Docker, Kubernetes & OpenShift
        • 1. Containers and Containerization
        • 2. Kubernetes Basics
        • 3. Managing Applications with Kubernetes
        • 4. The Kubernetes Ecosystem
        • 5. Final Assignments
      • Data Structures
        • 1. Introduction to DS&A
      • Algorithms
        • QE - Algorithms
        • Sorting Algorithms
          • Binary Search
          • Insertion Sort
          • Merge Sort
          • Quick sort
          • Heap sort
        • Divide and Conquer
        • Greedy Algorithm
        • Dynamic Programming
      • Operating System
        • QE - Operating System
        • 00_Operating System
      • CS231n Deep Learning for Computer Vision
        • 13. Self-Supervised Learning
      • CS480 Introduction to Machine Learning
        • 19. Attention and Transformer Networks
      • CS330 Multi-task and Meta Learning
        • 1. What is Multi-task Learning
      • Processing the Environment
        • Attention
      • Open VINO
      • Metaverse
        • 00_Metaverse
        • Spark AR
    • Research Projects
      • PPE Detection
        • Few-shot Data Sampling
      • Multiple Object Tracking
        • In-place Augmentation
      • Deep Clustering
        • Metrics
      • Defect Detection
        • 01_Defect_Improvement
        • Dataset: MVTec
        • Mixed supervision for surface-defect detection:
        • Practical Defect Detection
        • (Survey) Fabric Defect Detection
        • (Summary) Fabric Defect Detection
      • Medical Images
        • 01_Lung_Improvement
        • SANet
        • AnaXNet
        • 3D_EtoE Lung Cancer Screening
        • Semantics-enriched Representation
        • Attend And Compare
        • Recent Works
        • Kaggle_Medical Images
    • AI Engineer
    • Financial Invesment
      • 01_TPTrading
      • 02_BCTC
      • 03_Demand Side Platform (DSP)
      • 04_Business Models
      • Trading
        • 01_Technical Analysis
        • 02_Mentality
        • 03_Support and Resistance
    • Books
      • AI Books
      • Books
        • Persuasion IQ
        • Communication Skills
        • 48 Hours a Day
        • Maslow's Pyramid
        • MBTI
        • Tư Duy Ngược
      • Audio Books
    • Project Management
      • PM Methods
        • Agile
        • Scrum
        • Kanban
      • Foundations of PM
        • Module 1
        • Module 2
        • Module 3
        • Module 4
      • Project Initiation: Starting a Successul Projet
        • Module 1
        • Module 2
        • Module 3
        • Module 4
      • Project Planning: Putting It All Together
        • Module 1
      • Project Execution: Running the Project
      • Agile Project Management
      • Capstone: Applying Project Management in the Real World
    • Administrator

Few-shot Data Sampling

A Aboah, B Wang, U Bagci, Y Adu-Gyamfi

{YOLOv8, Few-shot data sampling,  Test-time augmentation (TTA) }

Paper: https://openaccess.thecvf.com/content/CVPR2023W/AICity/papers/Aboah_Real-Time_Multi-Class_Helmet_Violation_Detection_Using_Few-Shot_Data_Sampling_Technique_CVPRW_2023_paper.pdf 

Code: https://github.com/aboah1994/few-shotVideo-Data-Sampling.git. 

Motivation, Objectives and Related Works

Motivation

  • Helmet usage violations continue to be a significant problem. 

  • Automatic helmet detection systems have been proposed and implemented using computer vision techniques. 

  • Real-time implementation of such systems is crucial.

Objectives

  • Proposes a robust real-time helmet violation detection system. 

    1. A unique data processing strategy, referred to as few-shot data sampling, to develop a robust model with fewer annotations 

    2. A single-stage object detection model, YOLOv8 (You Only Look Once Version 8), for detecting helmet violations in real-time from video frames. 

Related Works

  • [15, 2, 13, 14] used color and texture-based features to detect helmets in real-time and reported an accuracy rate of 89.5%. 

  • [16] used a Convolutional Neural Network (CNN) trained on a large dataset of helmet and non-helmet images and reported a high accuracy rate of 97.5%. 

  • [3, 4, 9, 13]. 

  • [6] used YOLOv3, for helmet enforcement in real-time, reported an accuracy rate of 96.2%, and processing time of less than 30 milliseconds per frame. 

  • [5] proposed a real-time helmet enforcement system using a combination of color and texture-based features and a deep neural network to detect helmets in real-time and reported an accuracy rate of 95.6% and a processing time of less than 100 milliseconds per frame. 

Model

Idea

  • Develop a realtime helmet violation detection system that is robust to varying weather conditions and time of day.

Steps

  • ”Few-shot data sampling technique”: Developing a robust helmet detection model with fewer annotations. 

    1. Selecting a small but representative number of images from a large dataset using our developed algorithms.

    2. Applying data augmentation techniques to generate additional images for training. 

  • By using this technique, we are able to develop a robust helmet detection model with fewer annotations.

Architecture

Data Processing

  • Two main data pre-processing steps: 

      1. A few-shot data sampling framework: select the best representative set of data for training.

      2. Data augmentation: increase the variety of the training data. 

Few-shot Data Sampling Framework

    • Purpose:

      1. Missing annotations as illustrated in Fig. 4 ==> a few-shot data sampling framework was developed. 

      2. This framework was designed to help select the most representative frames of the entire dataset and minimize the need for re-annotation of all 20,000 frames. 

    • Three primary steps: 

      1. Determining the background in each video: (1) Randomly select frames within a 10-second period; (2) Compute the median of 60 percent of all frames in the sample. ==> Help negate the impact of short-term video resolution changes such as zooms, and pixelation. 

      2. Using "Algorithm 1" to categorize the videos according to the time of day and weather conditions such as day, night, and fog.  ==> Ensure a balanced representation of all video types in the training data.

      3. A frame-sampling algorithm (Algorithm 2) selects more frames from video types that were underrepresented, as identified. 

Algorithm 1

    • Used to categorize videos according to the time of day and weather conditions. 

      1. The proposed algorithm takes the estimated video background and calculates the frequency of each pixel. If the maximum frequency corresponds to a pixel value less than 150, the algorithm classifies the image as night; otherwise, the algorithm classifies the image as day or foggy. 

      2. To distinguish between daytime and foggy videos, the skewness of the image frequencies is computed. The algorithm classifies the video as foggy if the absolute skewness is close to zero. 

    • The frequency distribution of the day, night, and fog images are shown in Fig. 5. 

Algorithm 2

    • The algorithm aims to select a balanced set of frames from each video category by considering the total number of videos and their frame rates.

      1. Iterate through each video category: A loop iterates through each category (1, 2, 3, ..., n) of videos.

      2. Calculate sample rate:  For each category, the algorithm calculates a sample rate. The calculation involves dividing the total number of desired frames (nframes) by the sum of the product of frames per second (fps) and the number of videos (videosxfps) across all categories.

      3. Select frames: Within each category, the algorithm selects frames from each video at the calculated sample rate. How exactly frames are chosen within a video at this point is not specified in the limited view of the algorithm provided in the figure.

      4. End loop: After iterating through all video categories, the algorithm returns the selected frames (selected_frames).

Data Augmentation

    1. Image flipping: Flipping the image horizontally was done to aid the model to learn to detect helmets from both sides of the motorcycle. 

    2. Rotation: Rotation was applied to augment the data by changing the viewpoint angle of the helmet. 

    3. Scaling: Scaling was used to change the size of the helmet in the image, which can help the model learn to detect helmets of different sizes. 

    4. Cropping: Cropping of images was done to simulate the effect of occlusion, so that the model can learn to detect helmets even when they are partially obscured. 

    5. Blurring: Blurring of images were carried out to help the model learn to detect helmets under poor lighting conditions. 

    6. Color manipulation: We adjusted the brightness, contrast, and saturation of the image to help the model learn to detect helmets in different lighting conditions.

Models

  • YOLOv5.

  • YOLOv7.

  • YOLOv8.

Test Time Augmentation (TTA)

  • Test Time Augmentation (TTA) involves applying data augmentation techniques, such as rotation, flipping, or cropping, to the test data and then making predictions on each augmented version of the test data. 

  • The final prediction is then made by averaging the predictions made on the augmented versions of the test data. 

  • TTA can be computationally expensive. However, it can be implemented efficiently by using parallel processing or by batching the augmented data.

Training Strategy

  • All models were trained on an NVIDIA GeForce RTX 3090 GPU using 4,500 training examples. 

  • The dataset was divided in a ratio of 0.7:0.3 for training and validation respectively. 

  • The test dataset was provided separately by the organizers of the competition. 

  • To prevent the model from overfitting frames with high similarity, we employed the Semantic Clustering by Adopting Nearest Neighbors (SCAN) algorithm [10] to eliminate frames with high similarity (Fig 6). 

  • All models were trained for 400 epochs with a batch size of 16 and an image size of 832x832.

Experimental Results

Dataset

  • 2023 NVIDIA AI CITY CHALLENGE, Track 5 (motorcyclists): 100 videos for training; 100 videos for testing; 20s length; 10 fps; 1920x1080 pixels.

Metrics

  • mAP

  • Precision

  • Recll

Experimental Results

Key Takeaways

  1. Solving day/ night, and weather conditions problems in the traffic dataset.

  2. Solving missing annotations as Fig. 4.

References


    • n2  n0

    • θ

    • ŷ 

    • ∑

    • ȳ

About Me:

  • Phone: +84 946 937 937 (Phu)

  • Email: [email protected]  or  [email protected] 

  • Facebook: https://www.facebook.com/phu210.vn/

  • Page: https://www.lephongphu.works/home-page 

"I have gathered information from various sources on the internet, and it is now available for your perusal.

Thank you so much for coming here!"

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse